
Simulink® Code Inspector™

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Code Inspector™ User’s Guide
© COPYRIGHT 2011–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2011 Online only New for Version 1.0 (Release 2011b)
March 2012 Online only Revised for Version 1.1 (Release 2012a)
September 2012 Online only Revised for Version 1.2 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

Why Use This Product? . 1-3

Code Inspector Capabilities . 1-4
About Code Inspector Capabilities . 1-4
Model Interface . 1-5
Block Behavior . 1-6
Block Connectivity and Execution Order 1-7
Data and File Packaging . 1-8
Local Variables . 1-9
Limitations . 1-9

General Approach to Code Inspection 1-10
Simulink Code Inspector and DO-178 Workflows 1-10
End-to-End General Workflow . 1-11

Inspect Generated Code for a Sample Model 1-14

Model Compatibility Checking

2
Model Compatibility Checking Basics 2-2

Check Model Compatibility Using the Graphical User
Interface . 2-5

iii

Check Model Compatibility Using the Command-Line
Interface . 2-9

Fix or Work Around Incompatibilities 2-10
Fix or Work Around Unsupported Blocks 2-10
Fix or Work Around Global Data Store Usage 2-10

Code Inspection

3
Code Inspection Basics . 3-2

Inspect Code Using the Graphical User Interface 3-4

Inspect Code Using the Command-Line Interface 3-7

Code Inspection Reports . 3-8
Code Inspection Report Basics . 3-8
Interpret the Overall Inspection Result 3-10
Analyze Code Verification Results . 3-11
Model Patterns That Might Result in Code Verification
Failures . 3-16

Analyze Traceability Results . 3-19

Traceability Matrices . 3-24
Traceability Matrices Basics . 3-24
Prerequisites for Generating a Traceability Matrix 3-25
Generate a Traceability Matrix . 3-26
Add Comments to a Traceability Matrix 3-26
Retain Comments When Regenerating a Traceability
Matrix . 3-27

Traceability Matrix Limitations . 3-27

iv Contents

DO-178C Objectives Compliance

4
Model-Based Design Workflow in DO-178C 4-2

Applicable DO-178C Objectives . 4-5

v

vi Contents

1

Getting Started

• “Product Description” on page 1-2

• “Why Use This Product?” on page 1-3

• “Code Inspector Capabilities” on page 1-4

• “General Approach to Code Inspection” on page 1-10

• “Inspect Generated Code for a Sample Model” on page 1-14

1 Getting Started

Product Description
Automate source code reviews for safety standards

Simulink® Code Inspector™ automatically compares generated code with
its source model to satisfy code-review objectives in DO-178 and other
high-integrity standards. The code inspector systematically examines
blocks, parameters, and settings in a model to determine whether they
are structurally equivalent to operations, operators, and data in the
generated code. Simulink Code Inspector provides detailed model-to-code and
code-to-model traceability analysis. It generates structural equivalence and
traceability reports that you can submit to certification authorities to satisfy
DO-178 software coding verification objectives.

Support for industry standards is available through DO Qualification Kit
(for DO-178).

Key Features

• Structural equivalence analysis and reports

• Bidirectional traceability analysis and reports

• Compatibility checker to restrict model, block, and coder usage to
operations typically used in high-integrity applications

• Tool independence from Simulink code generators

• Tool qualification support (with DO Qualification Kit)

1-2

http://www.mathworks.com/products/do-178/

Why Use This Product?

Why Use This Product?
Use Simulink Code Inspector tooling to:

• Prepare for code inspection during model development.

• Run inspections on code generated from models and review reported results.

• Automatically generate code verification reports to support software
certification.

While developing a model intended for generating code, you can incrementally
and iteratively check the model for compatibility with Code Inspector rules.
This process significantly reduces the amount of time to achieve satisfactory
inspection results.

For companies and organizations that must certify software under DO-178C,
the Code Inspector significantly reduces the time and cost associated
with verifying code against requirements. Instead of completing manual
line-by-line code reviews with a project checklist, which is time intensive and
error prone, you can run the Code Inspector and review a detailed inspection
report.

1-3

1 Getting Started

Code Inspector Capabilities

In this section...

“About Code Inspector Capabilities” on page 1-4

“Model Interface” on page 1-5

“Block Behavior” on page 1-6

“Block Connectivity and Execution Order” on page 1-7

“Data and File Packaging” on page 1-8

“Local Variables” on page 1-9

“Limitations” on page 1-9

About Code Inspector Capabilities
Simulink Code Inspector automatically compares generated code with
its source model to satisfy code-review objectives in DO-178C and other
high-integrity standards. The Code Inspector systematically examines
blocks, parameters, and settings in a model to determine whether they are
structurally equivalent to operations, operators, and data in the generated
code. The tool captures results in structural equivalence and traceability
reports.

Sections in this topic provide details about what the Code Inspector examines
relative to:

• Model interface

• Block behavior

• Block connectivity and execution order

• Data and file packaging

• Local variables

Each section provides a table that lists what the Code Inspector examines.
For each entry the table provides:

1-4

Code Inspector Capabilities

• An identifier, which you can use, for example, to refer to an entry from a
tool qualification document.

• An example of a condition that the Code Inspector can discover.

• The level of support provided — full or partial; footnotes give more detail
for checks providing partial support.

For detailed descriptions of Code Inspector constraints and corresponding
model compatibility checks, see “About Model Configuration Constraints”,
“About Block Constraints”, and “Simulink Code Inspector Checks”.

Note Before you use Simulink Code Inspector, compare the Code Inspector
capabilities with your code review checklist. If you find code review checks for
which corresponding Code Inspector capabilities exist, you must separately
verify those checklist items.

Model Interface

ID Check Whether... Example of Detectable
Condition

Level of
Support

MDLINTFUNCGEN Model interface functions
were generated

Model step function is missing. Full

MDLINTDATAGEN Model interface data
structures were generated

Root input data structure for
a bus is missing.

Partial*

MDLINTFUNCSIG Model interface functions
have expected signatures

Model step function argument
sequence differs from
function prototype control
specification.

Partial**

MDLINTIOGEN Expected input and
output data structures
were generated

External input for
initialization function was not
initialized as expected.

Partial*

* Arrays and built-in types are supported. For structures, the name or tag is
verified, but not the structure fields.
** The data types of interface arguments are not verified in all cases.

1-5

1 Getting Started

Block Behavior

ID Check Whether... Example of Detectable
Condition

Level of
Support

BLKCOMPS Code generated for a block
includes all components of
functionality

Code for a Unit Delay block
does not include code for
updating its state variable.

Full

BLKCOMPSEXP Code generated for a block
includes only expected
instances of component
functionality

Code includes two
independent addition
operations that trace to
the same Sum block.

Full

BLKCOMPSTRACE With exception of
system logic code, code
segments trace back
to block component
functionality; system logic
code traces back to system
functionality

A segment of code exists that
does not trace back to a block
source.

Full

BLKCOMPSCONFIG Code for block component
functionality represents
the current block
configuration

A Relational Operator block is
configured for an equal (==)
operation, but it traces to code
that applies a not equal (!=)
operation.

Full

BLKCOMPSSYSFUNC Code for block component
functionality is in the
corresponding system
function

The output code for a Unit
Delay block is in the start
function of the parent system.

Full

BKLCOMPSPROPS Property settings in the
code, such as dimension,
complexity, and data
type, are compatible with
settings for corresponding
source blocks

A Gain block with an output
data type of double traces to
code that assigns the block
output to variable of type
real32_T.

Full

1-6

Code Inspector Capabilities

Block Connectivity and Execution Order

ID Check Whether... Example of Detectable
Condition

Level of
Support

BLKDATADEPEND Data dependency between
two block components is
preserved in the code

A Gain block generates a
multiplication operation with
one operand as its parameter
and another operand as a
variable not written to by the
source of the Gain block.

Full

BLKDATADEFUSE Data definition and use
dependencies in the code
reflect dependencies in
the model

A variable buffer is written to
by the operation of block A.
It is written to again by the
operation of block B before a
destination block for block A
has read the first value.

Full

BLKINPUT Sources of block input are
represented in the code in
the expected order

A Gain block uses input from
a muxed signal for input ports
1 and 2 (in that order). The
generated multiplication code
for the Gain block represents
the block input sources in a
different order than expected.
For example,

[y1, y2] = [k2, k1] .* [u1 u2]

or

[y1, y2] = [k1, k2] .* [u2 u1]

instead of

[y1, y2] = [k1, k2] .* [u1 u2]

Full

1-7

1 Getting Started

ID Check Whether... Example of Detectable
Condition

Level of
Support

BLKINDEX Selection of data in the
code uses the expected
index

A Gain block is fed by a Bus
Selector that selects field
f1 from bus foobus. The
multiplication operation in
the code is on foobus.

Full

BLKEXEORDER Code execution order is
consistent with model
element execution order

Gain block A feeds a Unit
Delay block B. The update
code of Unit Delay block B
appears before the output code
of Gain block A.

Full

Data and File Packaging

ID Check Whether... Example of Detectable
Condition

Level of
Support

SIGOBJAUTO Signal objects with storage
class auto are represented
in the code as expected

Signal sig1 is specified with
the auto storage class. In the
code, sig1 is represented as
a global variable instead of
an element of the output data
structure.

Full

PARAMOBJAUTO Parameter objects with
storage class auto are
represented in the code as
expected

Parameter K is specified with
the auto storage class. In the
code, the literal value of the
parameter is represented as a
global variable instead of its
literal value or an element of
the parameter data structure.

Full

PARAMINLINE Inlined parameter values
are represented in the
code as expected

A Gain block has its Gain
parameter set to 3.0. The code
uses the literal value 4.0 in
the multiplication operation.

Full

1-8

Code Inspector Capabilities

Local Variables

ID Check Whether... Example of Detectable
Condition

Level of
Support

LCLVARUSED Local variables are used Local variable tmp is defined
but not used

Full

LCLVARDEF Local variables are defined
before being used

Local variable tmp is used, but
is not defined

Full

Limitations
The Simulink Code Inspector has the following limitations:

• If the code generated for your model contains a step function with the
function argument real-time model, the Simulink Code Inspector will not
inspect the generated code. The real-time model function argument is
not supported for code generation.

1-9

1 Getting Started

General Approach to Code Inspection

In this section...

“Simulink® Code Inspector™ and DO-178 Workflows” on page 1-10

“End-to-End General Workflow” on page 1-11

Simulink Code Inspector and DO-178 Workflows
The overall workflow for Simulink Code Inspector and meeting DO-178
objectives encompasses the following sub-workflows:

• Model compatibility checking: Check a Simulink model for
compatibility with Code Inspector rules.

Model compatibility checking can significantly reduce the amount of time
to achieve satisfactory code inspection results by exposing issues early in
the model development process. The compatibility checks also promote
model, block, and coder usage patterns that tend to align with the needs
of high-integrity applications, such as maintaining a high degree of
traceability. Model compatibility checking is an incremental and iterative
process. For more detail on the model compatibility checking, see “Model
Compatibility Checking Basics” on page 2-2.

• Code inspection: Run the Code Inspector to compare generated C code
with its source model.

During code inspection, Simulink Code Inspector systematically examines
blocks, parameters, and settings in a model to determine whether they are
structurally equivalent to operations, operators, and data in the generated
code, and generates structural equivalence and traceability reports that
can be used to support software certification. Code inspection is an
incremental and iterative process. For more detail on code inspection, see
“Code Inspection Basics” on page 3-2.

• Software certification: Use the code inspection reports as part of
a certification package to satisfy DO-178 software coding verification
objectives.

The DO Qualification Kit product provides an artifacts explorer that allows
you to manage a certification package for your DO-178C project. The kit
also provides detailed information on how to apply Model-Based Design to

1-10

General Approach to Code Inspection

DO-178C. For more information, see “Model-Based Design Workflow in
DO-178C” on page 4-2 and http://www.mathworks.com/products/do-178/.

• Tool qualification: Use the code inspection reports as part of qualifying
Simulink Code Inspector for projects based on the DO-178C standard.

MathWorks® provides a DO Qualification Kit product that supports
you in qualifying Simulink Code Inspector and other MathWorks
verification tools for projects based on the DO-178C standard. For
more information, see “Model-Based Design Workflow in DO-178C”
on page 4-2, “Applicable DO-178C Objectives” on page 4-5, and
http://www.mathworks.com/products/do-178/.

End-to-End General Workflow
The end-to-end general workflow for Simulink Code Inspector is as follows:

1 Open a model. If you want to operate on a working copy of the model,
save a copy of the model to a working folder, and change directory to the
work folder.

2 Configure model compatibility checks.

a Set the model parameter AdvancedOptControl to the value '-SLCI',
if it is not already set. This setting constrains the code optimizations
that Embedded Coder® uses to a subset that is compatible with code
inspection. With the top model window selected, issue the following
command:

>> set_param(gcs, 'AdvancedOptControl', '-SLCI')

b From the top model window, select Code > Simulink Code Inspector.
This opens the Simulink Code Inspector dialog box.

c Examine the dialog box parameters that apply to model compatibility
checking. If you are checking a model that references other models, you
can choose to check only the top model or the entire model reference
hierarchy. Selecting the option Inspect all referenced models
includes referenced models in model compatibility checking as well as
code inspection.

3 Run model compatibility checks. Click Check this model or Check all
models. The compatibility checker displays a progress bar.

1-11

http://www.mathworks.com/products/do-178/
http://www.mathworks.com/products/do-178/

1 Getting Started

4 Analyze the model compatibility check results.

a If you opted to check only the top model, results are displayed directly in
the Model Advisor dialog box. You can use the dialog box to explore and
rerun individual checks and save the results.

b If you opted to check all models, results are displayed in the command
window and in an HTML summary report window. You can click links in
the HTML summary report to view the detailed Model Advisor Report
for each model and referenced model that was checked.

If the checks pass, the model is ready for code inspection. If
incompatibilities are reported, fix or work around the issues and recheck
the model for compatibility.

5 Generate C code for the model, if it has not already been generated. You can
generate code implicitly as part of code inspection (using the Simulink Code
Inspector dialog box option Generate code before code inspection), or
use Embedded Coder separately to generate the model code. If code was
generated previously and placed in a configuration management system,
make sure the code is available and ready for inspection.

6 Configure code inspection.

a Open the Simulink Code Inspector dialog box, if it is not already open.

b Examine and configure the dialog box parameters that apply to code
inspection.

• If you are inspecting a model that references other models, you can
choose to inspect only the top model or the entire model reference
hierarchy. Selecting the option Inspect all referenced models
includes referenced models in model compatibility checking as well
as code inspection.

• If your generated code does not use the default Embedded Coder folder
structure created by code generation, update the Code placement
parameter appropriately.

• Optionally, you can change the location to which code inspection
writes the code inspection report, using the dialog box parameter
Report folder.

1-12

General Approach to Code Inspection

7 Inspect the generated code. Click Inspect Code or Generate and inspect
code. The Code Inspector displays a progress bar.

8 Analyze the code inspection results.

a If you opted to inspect only the top model, results are displayed directly
in the detailed code inspection report for the top model.

b If you opted to inspect all models, results are displayed in an HTML
summary report window. You can click links in the HTML summary
report to view the detailed code inspection report for each model and
referenced model that was inspected.

If all models get the overall inspection result Passed, the code inspection is
complete. If Warning or Failed status is returned for a model, fix or work
around the reported conditions and reinspect the model.

9 If you are using the code inspection reports as part of a certification
package to satisfy DO-178 software coding verification objectives,
further steps will be determined by the larger certification process.
For information on how to apply Model-Based Design to meeting
DO-178B objectives, see “Model-Based Design Workflow in DO-178C”
on page 4-2, “Applicable DO-178C Objectives” on page 4-5, and
http://www.mathworks.com/products/do-178/..

1-13

http://www.mathworks.com/products/do-178/

1 Getting Started

Inspect Generated Code for a Sample Model
The following example shows how to use the Simulink Code Inspector dialog
box to perform key tasks in the code verification workflow. In this example,
you:

• Prepare a model hierarchy for code generation and code inspection.

• Automatically generate code for the model hierarchy.

• Verify the generated code independently of the code generation tool.

• Purposely introduce an error into the generated code and inspect for failure.

Note The example slcidemo_intro illustrates the same code verification
workflow using MATLAB commands.

1 Open the example model slcidemo_roll_orig using the following
command:

>> slcidemo_roll_orig

Save a copy of the model, renaming it to slcidemo_roll, and change the
MATLAB® current working folder to the location of the saved model. The
top level of the model appears as follows.

1-14

Inspect Generated Code for a Sample Model

This model represents a basic roll axis autopilot with two operating modes:
roll attitude hold and heading hold. The mode logic for these modes is
external to this model. The model architecture represents the heading hold
mode and basic roll attitude function as referenced models. The model
includes:

• Virtual subsystem RollAngleReference, which implements the basic
roll angle reference calculation. Embedded Coder code generation inlines
this calculation directly into the main function for slcidemo_roll.

• Model block HeadingMode, referencing a separate model that computes
the roll command to track the heading.

• Model block BasicRollMode, referencing a separate model that computes
the roll attitude control function.

2 Prepare the model for code generation and code inspection.

1-15

1 Getting Started

Note If you try this example with a model other than slcidemo_roll, set
the model parameter AdvancedOptControl to the value '-SLCI'. This
setting constrains the code optimizations that Embedded Coder uses to a
subset that is compatible with code inspection. With the top model window
selected, issue the following command:

>> set_param(gcs, 'AdvancedOptControl', '-SLCI')

a From the top model window, select Code > Simulink Code Inspector.
The Simulink Code Inspector dialog box opens.

b Configure model compatibility checks. For this example, select Inspect
all referenced models and click Apply. This setting includes
referenced models in model compatibility checking as well as code
inspection. The dialog box should appear as follows:

c Run the model compatibility checks by clicking Check all models. The
compatibility checker displays a progress bar.

Results appear in the command window and in an HTML summary
report window.

1-16

Inspect Generated Code for a Sample Model

• The MATLAB Command Window displays results similar to the
following:

• The HTML summary report window displays results similar to the
following.

Note This HTML report also is linked from the command window
results. It is saved as file summaryReport.html in subfolder
/slprj/modeladvisor under the current working folder.

3 Generate code for the model. You can generate code implicitly as part
of code inspection (using the Simulink Code Inspector dialog box option

1-17

1 Getting Started

Generate code before code inspection), or perform code generation
and code inspection as separate steps. This example separates the code
generation step from the code inspection step.

a In the top model window, select Simulation > Model Configuration
Parameters to open the Configuration Parameters dialog box. In the
Code Generation > Report pane, select the option Open report
automatically. (If you try this example with a model other than
slcidemo_roll, also select Code-to-model, Model-to-code, and the
four Traceability Report Contents options in the Report pane.) Click
Apply and save the model changes.

b Go to the Code Generation main pane and click Generate code. (If
the Generate code button does not appear for your model, select the
Generate code only option to enable the button.) Progress is displayed
in the MATLAB Command Window.

c Embedded Coder code generation displays results in an HTML report
window.

4 Inspect the generated code.

1-18

Inspect Generated Code for a Sample Model

a Open the Simulink Code Inspector dialog box if it is not already
open, and examine the code inspection parameter settings. The Code
placement parameter is set to Embedded Coder default, which
configures code inspection to use the default Embedded Coder folder
structure created by code generation.

b Optionally, you can change the location to which code inspection writes
the code inspection report, using the dialog box parameter Report
folder. For example, enter the path string ./report and click Apply.

c To inspect the generated code, click Inspect Code. The Code Inspector
displays a progress bar.

d The Code Inspector displays a summary in an HTML report window.

The summary report links to detailed code inspection reports for the top
model and each referenced model. For example, here is the topmost
portion of the code inspection report for the top model, slcidemo_roll.

1-19

1 Getting Started

The summary report and the detailed code inspection reports are saved
as HTML files in the Report folder location that you specified.

5 Insert an error into the generated code and inspect for failure.

1-20

Inspect Generated Code for a Sample Model

To show a failed result, this example inserts an intentional error in the
generated code. The Logical Operator block inside the RollAngleReference
subsystem is changed in the generated code from an OR operation
(||) to an AND operation (&&), using the example utility function
slcidemo_modifycode.

a To highlight the block for which corresponding code is modified, issue
the following command:

>> hilite_system('slcidemo_roll/RollAngleReference/Or');

b To modify the OR to an AND, issue the following commands:

>> cfile = fullfile('.','slcidemo_roll_ert_rtw','slcidemo_roll.c');

>> slcidemo_modifycode(cfile,'<S1>/Or','||','&&')

The slcidemo_modifycode utility function displays the following output:

Modified line 51 of file .\slcidemo_roll_ert_rtw\slcidemo_roll.c.

Before: if ((U_Phi >= 6.0) || (U_Phi <= -6.0)) {

After : if ((U_Phi >= 6.0) && (U_Phi <= -6.0)) {

c To reinspect the generated code, open the Simulink Code Inspector
dialog box if it is not already open, and click Inspect code.

d View the code inspection reports.

The summary report displays a failure for the top model.

The code inspection report for the top model contains several indications
of a failed comparison between the Logical Operator block and the
corresponding code. The top of the report shows the following.

1-21

1 Getting Started

Further down in the report, under Code Verification
Details > Model-to Code Verification, the mismatch between block
and code is flagged.

1-22

Inspect Generated Code for a Sample Model

Additionally, under Traceability Details > Model-to Code
Traceability, the mismatch between block and code is flagged.

6 Optionally, try modifying the model or other aspects of the generated code
to see how code inspection results are affected.

1-23

1 Getting Started

1-24

2

Model Compatibility
Checking

• “Model Compatibility Checking Basics” on page 2-2

• “Check Model Compatibility Using the Graphical User Interface” on page
2-5

• “Check Model Compatibility Using the Command-Line Interface” on page
2-9

• “Fix or Work Around Incompatibilities” on page 2-10

2 Model Compatibility Checking

Model Compatibility Checking Basics
When developing a model from which you intend to generate code that
will be verified using Simulink Code Inspector, you can incrementally and
iteratively check the model for compatibility with Code Inspector rules. Model
compatibility checking can significantly reduce the amount of time to achieve
satisfactory code inspection results by exposing issues early in the model
development process. The compatibility checks also promote model, block,
and coder usage patterns that tend to align with the needs of high-integrity
applications, such as maintaining a high degree of traceability.

During a model compatibility check, the software checks for model and block
configuration settings that help produce an in-memory representation of
the model that is compatible with Code Inspector rules. You can set model
and block configuration parameters many different ways and produce a
compatible in-memory representation. Compatibility checks scan for a subset
of those ways. Although a model can fail a compatibility check and still
pass inspection, passing compatibility checks increases the likelihood of
satisfactory code inspection.

The compatibility checks look for conditions that violate Code Inspector
constraints on model configuration parameters, other modelwide attributes,
and block usage. Items affected by Code Inspector constraints include:

• Model parameters for

- Solver use

- Data import/export

- Optimization

- Diagnostics

- Hardware implementation

- Model referencing

- Code generation

• Modelwide attributes

- Unconnected objects

- Function specifications

2-2

Model Compatibility Checking Basics

- Model arguments

- Unsupported blocks

- Tunable workspace variables

- Sample times

- Global data stores

- Fixed-point instrumentation

- Root outport usage

- Bus usage

• Block usage

- Data types and ports

- Block parameters

For detailed description of Code Inspector constraints and the corresponding
model compatibility checks, see “About Model Configuration Constraints”,
“About Block Constraints”, and “Simulink Code Inspector Checks”.

To initiate compatibility checking for your model, you can do any of the
following:

• From the model window, select Code > Simulink Code Inspector, and
use the Simulink Code Inspector dialog box to control model compatibility
checking. For more information, see “Check Model Compatibility Using the
Graphical User Interface” on page 2-5.

• Use the slci.Configuration interface to programmatically control model
compatibility checking. For more information, see “Check Model
Compatibility Using the Command-Line Interface” on page 2-9.

• Use the slciadvisor interface to open an SLCI Advisor session (equivalent to
Model Advisor preloaded with Simulink Code Inspector checks) for the open
model. This function provides direct access to SLCI model compatibility
checking that can streamline iterative checking of a model.

Model compatibility checking generates a detailed HTML report for each
model checked. If you checked models in a model reference hierarchy, the
software reports summary status at the MATLAB command line and displays

2-3

2 Model Compatibility Checking

a summary HTML report. You can click links in the HTML summary report
to view the detailed Model Advisor Report for each model and referenced
model that was checked. If you checked only one model, the detailed model
results are displayed directly in a Model Advisor dialog box.

In the detailed results, the result of each check is explained, and if you need
to fix your model, recommended actions are provided. The available model
compatibility checks are listed in report order and described in the “Simulink
Code Inspector Checks” reference.

2-4

Check Model Compatibility Using the Graphical User Interface

Check Model Compatibility Using the Graphical User
Interface

1 Open a model that you want to check for compatibility with Simulink Code
Inspector. To use an example model, you can do the following:

a Open the example model slcidemo_roll_orig using the following
command:

>> slcidemo_roll_orig

b Save a copy of the model to a work folder, renaming it to slcidemo_roll.
Change directory to the work folder.

2 Open the Simulink Code Inspector dialog box and configure model
compatibility checks.

a From the top model window, select Code > Simulink Code Inspector.

b Examine the parameters that apply to model compatibility checking. If
you are checking a model that references other models, consider whether
to select the option Inspect all referenced models. This option
includes referenced models in model compatibility checking as well as
code inspection. If you select this option, the button Check this model
changes to Check all models.

2-5

2 Model Compatibility Checking

3 To run model compatibility checks, click Check this model or Check all
models. The compatibility checker displays a progress bar.

4 If you opted to check only the top model, results are displayed directly in
the Model Advisor dialog box. You can use the dialog box to explore and
rerun individual checks and save the results.

If you opted to check all models, results are displayed in the command
window and in an HTML summary report window.

• The MATLAB Command Window displays results similar to the
following:

2-6

Check Model Compatibility Using the Graphical User Interface

• The HTML summary report window displays results similar to the
following:

Note This HTML report also is linked from the command window
results. It is saved as file summaryReport.html in subfolder
/slprj/modeladvisor under the current working folder.

To view the detailed Model Advisor Report for a model listed in the
HTML summary report, go to the Systems Run table, and click the
corresponding link in the Model Advisor Report column.

2-7

2 Model Compatibility Checking

5 If the checks pass, the model is ready for inspection. If incompatibilities
are reported, fix the issues and recheck the model for compatibility.

2-8

Check Model Compatibility Using the Command-Line Interface

Check Model Compatibility Using the Command-Line
Interface

To programmatically control model compatibility checking, use the
slci.Configuration interface.

In the MATLAB Command Window or within a script, you issue a
call to slci.Configuration.checkCompatibility, specifying the
handle to a Simulink Code Inspector configuration object for the model,
previously returned by cfgObj = slci.Configuration(modelName);. The
checkCompatibility function returns objects containing results information.

The following example shows how to programmatically run the compatibility
checker and report results.

fprintf('\nInvoking compatibility checker ...\n');

config = slci.Configuration('slcidemo_roll');
result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)
fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...
result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

If the checks pass, the model is ready for inspection. If incompatibilities are
reported, fix the issues and recheck the model for compatibility.

For an example of using the command-line interface to control the complete
code inspection workflow, see the example slcidemo_intro.

2-9

2 Model Compatibility Checking

Fix or Work Around Incompatibilities

In this section...

“Fix or Work Around Unsupported Blocks” on page 2-10

“Fix or Work Around Global Data Store Usage” on page 2-10

Fix or Work Around Unsupported Blocks
If the compatibility checker identifies one or more unsupported blocks in
your model, possible actions include:

• Replace an unsupported block with a supported block. Supported blocks
are listed in “Supported Blocks — By Category”, and also can be viewed in
the slcilib block library.

• Replace an unsupported block with an equivalent combination of supported
blocks.

• Replace an unsupported block with an S-Function block created using the
Legacy Code Tool.

• If one or more unsupported blocks cannot be removed, use referenced
models to isolate the unsupported block(s), and/or use a partial verification
work flow that omits the unsupported block(s).

Fix or Work Around Global Data Store Usage
If the compatibility checker identifies one or more externally defined signal
objects that are being referenced as global data stores by Data Store Read or
Write blocks in the model, possible actions include:

• If possible, avoid use of externally defined signal objects that are referenced
as global data stores by Data Store Read or Data Store Write blocks. This
usage causes Simulink software to create hidden Data Store memory blocks
at root level, which is incompatible with code inspection.

• Move the affected Data Store Read or Data Store Write blocks into Model
blocks.

2-10

3

Code Inspection

• “Code Inspection Basics” on page 3-2

• “Inspect Code Using the Graphical User Interface” on page 3-4

• “Inspect Code Using the Command-Line Interface” on page 3-7

• “Code Inspection Reports” on page 3-8

• “Traceability Matrices” on page 3-24

3 Code Inspection

Code Inspection Basics
Code inspection automatically compares generated code with its source
model to satisfy code-review objectives in DO-178C and other high-integrity
standards. The code inspection process builds an in-memory representation
of the model that is independent of the code generation process. The Code
Inspector systematically examines blocks, parameters, and settings in a
model to determine whether they are structurally equivalent to operations,
operators, and data in the generated code, and generates reports that can be
used to support software certification.

The aspects of a Simulink model that are analyzed by code inspection include
the following:

• Model interface

• Block behavior

• Block connectivity and execution order

• Data and file packaging

• Local variables

For more information on what the Code Inspector examines, see “Code
Inspector Capabilities” on page 1-4.

When developing a model from which you intend to generate code that
will be verified using Simulink Code Inspector, you can incrementally and
iteratively check the model for compatibility with Code Inspector rules. Model
compatibility checking can significantly reduce the amount of time to achieve
satisfactory code inspection results by exposing issues early in the model
development process. Before inspecting the code for a model, you should
check that the model passes Simulink Code Inspector compatibility checks.
For more information, see “Model Compatibility”.

You can generate the model code to be inspected as part of code inspection, or
perform code generation and code inspection as separate steps.

To initiate code inspection for a model that has passed Simulink Code
Inspector compatibility checks, you can do either of the following:

3-2

Code Inspection Basics

• From the model window, select Code > Simulink Code Inspector, and
use the Simulink Code Inspector dialog box to control code inspection. For
more information, see “Inspect Code Using the Graphical User Interface”
on page 3-4.

• Use the slci.Configuration interface to programmatically control
code inspection. For more information, see “Inspect Code Using the
Command-Line Interface” on page 3-7.

Code inspection generates a detailed HTML report for each model inspected.
If you inspected all models in a model reference hierarchy, the software
displays a summary HTML report. You can click links in the HTML
summary report to view the detailed code inspection report for each model
and referenced model that was inspected. If you inspected only one model, the
model results are displayed directly in a detailed code inspection report.

The detailed report for a model documents code verification and traceability
results. The code inspection report contains the following major sections:

• Code Verification — Summary and detailed reports on verification of
structural equivalence between model and code elements.

• Traceability — Summary and detailed reports on model-to-code and
code-to-model traceability

For companies and organizations that must certify software under DO-178C,
the Code Inspector significantly reduces the time and cost associated
with verifying code against requirements. Instead of completing manual
line-by-line code reviews with a project checklist, which is time intensive and
error prone, you can run the Code Inspector and review a detailed inspection
report. For more information about the code inspection report, see “Code
Inspection Reports” on page 3-8.

3-3

3 Code Inspection

Inspect Code Using the Graphical User Interface
1 Open a model for which you want to generate and inspect code using
Simulink Code Inspector. To use an example model, you can do the
following:

a Open the example model slcidemo_roll_orig using the following
command:

>> slcidemo_roll_orig

b Save a copy of the model to a work folder, renaming it to slcidemo_roll.
Change directory to the work folder.

2 If the model has not previously passed model compatibility checking,
follow the procedure in “Check Model Compatibility Using the Graphical
User Interface” on page 2-5. When the model passes the Simulink Code
Inspector compatibility checks, return to this procedure.

3 Generate code for the model. You can generate code implicitly as part
of code inspection (using the Simulink Code Inspector dialog box option
Generate code before code inspection), or perform code generation
and code inspection as separate steps. This example separates the code
generation step from the code inspection step.

a In the top model window, select Simulation > Model Configuration
Parameters to open the Configuration Parameters dialog box. If you
want to generate an HTML code generation report for later reference
(recommended), go to the Code Generation > Report pane, and select
the option Open report automatically. (If you try this example with a
model other than slcidemo_roll, it is recommended to select all options
in the Report pane.) Click OK and save the model changes.

b Go to the Code Generation main pane and click Generate code. (If
the Generate code button does not appear for your model, select the
Generate code only option to enable the button.) Progress is displayed
in the MATLAB Command Window.

c Embedded Coder code generation displays results in an HTML report
window.

4 Inspect the generated code.

3-4

Inspect Code Using the Graphical User Interface

a Open the Simulink Code Inspector dialog box if it is not already
open, and examine the code inspection parameter settings. The Code
placement parameter is set to Embedded Coder default, which
configures code inspection to use the default Embedded Coder folder
structure created by code generation.

b Optionally, you can change the location to which code inspection writes
the code inspection report, using the dialog box parameter Report
folder. For example, enter the path string ./report and click Apply.

c To inspect the generated code, click Inspect Code. The Code Inspector
displays a progress bar.

d The Code Inspector displays a summary in an HTML report window:

The summary report links to detailed code inspection reports for the top
model and each referenced model. For example, here is the topmost
portion of the code inspection report for the top model, slcidemo_roll:

3-5

3 Code Inspection

The summary report and the detailed code inspection reports are saved
as HTML files in the Report folder location you specified.

3-6

Inspect Code Using the Command-Line Interface

Inspect Code Using the Command-Line Interface
To programmatically control code inspection, use the slci.Configuration
interface.

In the MATLAB Command Window or within a script, you issue a call to
slci.Configuration.inspect, specifying the handle to a Simulink Code
Inspector configuration object for the model, previously returned by cfgObj =
slci.Configuration(modelName);. The inspect function returns objects
containing results information.

The following example shows how to programmatically run the
Code Inspector and report results. The model is assumed to have
previously passed Simulink Code Inspector compatibility checks (see
slci.Configuration.checkCompatibility).

config = slci.Configuration('slcidemo_roll');
config.setTopModel(true);
config.setReportFolder(fullfile('.','report'));
result = config.inspect('DisplayResults','None');
fprintf('Model %s status: %s\n',result.ModelName, result.Status);

The inspection report is placed at the location specified in the call to
slci.Configuration.SetReportFolder, which is the report subfolder of the
current working folder. To display the generated report, issue the following
command:

web(fullfile('.', 'report','slcidemo_roll_report.html'));

For an example of using the command-line interface to control the complete
code inspection workflow, see the example slcidemo_intro.

3-7

3 Code Inspection

Code Inspection Reports

In this section...

“Code Inspection Report Basics” on page 3-8

“Interpret the Overall Inspection Result” on page 3-10

“Analyze Code Verification Results” on page 3-11

“Model Patterns That Might Result in Code Verification Failures” on page
3-16

“Analyze Traceability Results” on page 3-19

Code Inspection Report Basics
Code inspection generates an HTML code inspection report for a Simulink
model and its generated code. The report provides detailed analysis of
structural equivalence and bidirectional traceability between the model and
the code generated from the model.

Code inspection automatically compares generated code with its source
model to satisfy code-review objectives in DO-178C and other high-integrity
standards. The code inspection process builds an in-memory representation
of the model that is independent of the code generation process. The Code
Inspector systematically examines blocks, parameters, and settings in a
model to determine whether they are structurally equivalent to operations,
operators, and data in the generated code, and generates reports that can be
used to support software certification.

Simulink Code Inspector code inspection carries out a translation validation.
Inputs to the Code Inspector are a Simulink model and the C source code
generated by the Embedded Coder code generator for the model. The Code
Inspector processes these two inputs into internal representations (IRs),
called model IR and code IR. These IRs are transformed into normalized
representations to facilitate further analysis. In this process, the model
IR represents the expected pattern, and the code IR constitutes the actual
pattern to be verified. To verify the generated code, the Code Inspector
attempts to match the normalized model IR with the normalized code IR.

3-8

Code Inspection Reports

Note Simulink Code Inspector code inspection has been implemented
independently of Embedded Coder code generation. In particular, the IRs
used by Code Inspector are different from the IRs used by the code generator.

Use of normalization techniques allows the Code Inspector to inspect code
generated by an highly-optimizing code generator. The results of this
matching process are reported to the user by means of a code verification
report and a traceability report. When code inspection completes, the code
verification report documents the translation validation process, and the
traceability report provides a bidirectional mapping between model elements
and their counterparts in the generated code.

The code inspection results are presented in a hierarchical manner. A
summary report lists the top model and, if the code inspection encompassed

3-9

3 Code Inspection

referenced models, each model in the model reference hierarchy. For each
model, the summary report provides aggregated status information and a link
to a detailed code inspection report for the model.

The detailed code inspection reports provide the following information for
each model:

• Overall Inspection Result — Passed, Warning, or Failed — based on
aggregated status of the code verification and traceability results

• Code Verification Results — Summary and detailed reports on verification
of structural equivalence between model and code elements

• Traceability Results — Summary and detailed reports on bidirectional
model-to-code mapping

Interpret the Overall Inspection Result
The detailed code inspection report for a model or submodel provides a header
section that includes the Overall Inspection Result value for the model
— Passed, Warning, or Failed — based on aggregated status of the code
verification and traceability results.

3-10

Code Inspection Reports

The Overall Inspection Result value is aggregated from the following
values:

• Code Verification Results — The overall code verification result
aggregated from the code verification report subsections. Possible
values are Verified, Partially verified, or Failed to verify. For
more information about how the Code Verification Results value is
aggregated, see “Analyze Code Verification Results” on page 3-11.

• Traceability Results — The overall traceability result aggregated
from the traceability report subsections. Possible values are Traced,
Partially traced, or Failed to trace. For more information about how
the Traceability Results value is aggregated, see “Analyze Traceability
Results” on page 3-19.

The following table shows how code verification and traceability results are
aggregated into the Overall Inspection Result.

Verified Partially verified Failed to verify

Traced Passed Warning Failed

Partially traced Warning Warning Failed

Failed to trace Failed Failed Failed

Analyze Code Verification Results
The detailed code inspection report for a model or submodel provides sections
named Code Verification Results and Code Verification Details,
which provide summary and detailed reports on verification of structural
equivalence between the model and code generated from the model. The code
verification report provides information about:

• Verification of the interfaces of generated code functions

• Verification of structural equivalence between model and code

• Temporary variable usage

The following sample report excerpt shows summary code verification results
for generated code that is structurally equivalent to its corresponding model.
Model elements that are outside of the supported language subset and

3-11

3 Code Inspection

corresponding code fragments are indicated as “Unable to process” in the
code verification report.

The Code Verification Results section displays:

3-12

Code Inspection Reports

• The overall code verification result value aggregated from the code
verification report subsections. Possible values for Code Verification
Results are Verified, Partially verified, or Failed to verify.

• Subsection-level verification results:

- Function Interface Verification Results

- Model To Code Verification Results

- Code To Model Verification Results

- Temporary Variable Usage Results

The subsection-level verification result values are aggregated from the
verification status of every object (function interface, model element, code
line, or temporary variable) in the subsection. Each subsection returns the
value Verified, Partially verified, or Failed to verify.

• Object level verification results. Each function interface, model element,
code line, or temporary variable within a subsection returns a verification
status value:

- For model elements or code lines: Verified, Partially processed,
Unable to process, or Failed to verify.

- For function interfaces or temporary variables: Verified or Failed to
verify.

When the object-level verification status is aggregated to produce the
subsection-level status value, the most severe object status becomes the
subsection status.

Most Severe Object-Level Status Resulting Subsection-Level
Status

Failed to verify Failed to verify

Partially processed or Unable to
process

Partially verified

Verified Verified

Correspondingly, when the section-level verification status is aggregated to
produce the Code Verification Results value, the most severe subsection
status becomes the overall code verification status.

3-13

3 Code Inspection

Most Severe Subsection-Level
Status

Resulting Overall Code
Verification Status

Failed to verify Failed to verify

Partially verified Partially verified

Verified Verified

The following sample report excerpt illustrates how code verification status is
aggregated when one or more objects fails to verify.

3-14

Code Inspection Reports

3-15

3 Code Inspection

Model Patterns That Might Result in Code Verification
Failures

Redundant Modeling Patterns
Models with redundant modeling patterns fail code verification. When
generating the code, Simulink Coder™ eliminates the redundant functionality
of the block. If this elimination results in a structural change of the generated
code, Simulink Code Inspector reports it as Failed to verify. For example:

• Delay blocks with output as the source of the input. The update of the Unit
Delay block is eliminated in the generated code.

• Switch blocks with inputs from the same local signals. The switch 3 block
is eliminated in the generated code. Switch blocks switch 1 and switch 2
are not eliminated because they connect to root inports.

3-16

Code Inspection Reports

• Data store read block connected to data store write block. Both the
Data Store Read and Data Store Write1 blocks are eliminated in the
generated code.

Blocks with Constant Non-Finite Outputs
If your model contains blocks with constant non-finite outputs, the model can
fail code verification. The result is Failed to verify.

In this example, the Math Function block is fixed at infinity. Although the
Simulink Coder generates code for the model, code verification fails.

Action Subsystems with Output Not Connected to Merge Blocks
If your model contains action subsystems and the outputs are not connected
to a single merge block, the model can fail code verification. The result is
Failed to verify.

In this example, there are two action subsystems, each with output connected
to a gain block. Code verification fails.

3-17

3 Code Inspection

To pass code verification, consider connecting the output of all action
subsystems to a single merge block, as shown below. Simulink Code Inspector
can then verify the model.

Multiport Switch Blocks with Input From Same Local Signal
Your model can fail code verification if it contains a multiport switch block
with both:

• More than one input from the same local signal.

• Output to a local signal.

The generated code might have switch case statements with fall through case
statements. The result is Failed to verify.

In this example, Mulitport Switch block input ports 1 and 3 are connected
to the same local signal. Code verification fails.

3-18

Code Inspection Reports

Analyze Traceability Results
The detailed code inspection report for a model or submodel provides sections
named Traceability Results and Traceability Details, which provide
summary and detailed reports on bidirectional model-to-code mapping. The
traceability report documents the code lines that implement a particular
model element and the model elements that contributed to the generation
of a line of code.

The following sample report excerpt shows summary traceability results for
generated code that is structurally equivalent to its corresponding model.

3-19

3 Code Inspection

The Traceability Results section displays:

• The overall traceability result value aggregated from the traceability
report subsections. Possible values for Traceability Results are Traced,
Partially traced, or Failed to trace.

• Subsection-level traceability results:

- Model To Code Traceability Results

- Code To Model Traceability Results

The subsection-level traceability result values are aggregated from the
traceability status of every object (model element or code line) in the
subsection. Each subsection returns the value Traced, Partially traced,
or Failed to trace.

3-20

Code Inspection Reports

• Object level traceability results. Each model element or code line within a
subsection returns a status value:

- For model elements: Traced, Partially processed, Unable to
process, or Failed to trace.

- For code lines: Traced, Partially processed, Unable to process,
Failed to trace, Nonfunctional, or Not processed.

• Not processed code — a list of C code lines that were not processed for
code-to-model traceability.

Note

• Nonfunctional code includes empty lines, code lines that contain only
comments, and opening and closing brackets ({ and }).

• Not processed code is code that is located outside the scope of verified
functions. For example, an #include statement that is located outside
of the scope of a model step or initialize function is not processed for
code-to-model traceability.

• Unable to process code is code that is either of the following:

- Does not match with any model objects.

- One of these tokens: ';', ')', '(', '[', ']', or a type identifier
(for example, real_T).

When the object-level traceability status is aggregated to produce the
subsection-level status value, the most severe object status becomes the
subsection status.

3-21

3 Code Inspection

Most Severe Object-Level Status Resulting Subsection-Level
Status

Failed to trace Failed to trace

Partially processed or Unable to
process

Partially traced

Traced, Nonfunctional, or Not
processed

Traced

Correspondingly, when the section-level traceability status is aggregated to
produce the Traceability Results value, the most severe subsection status
becomes the overall traceability status.

Most Severe Subsection-Level
Status

Resulting Overall Traceability
Status

Failed to trace Failed to trace

Partially traced Partially traced

Traced Traced

The following sample report excerpt illustrates how traceability status is
aggregated when one or more objects fails to trace.

3-22

Code Inspection Reports

3-23

3 Code Inspection

Traceability Matrices

In this section...

“Traceability Matrices Basics” on page 3-24

“Prerequisites for Generating a Traceability Matrix” on page 3-25

“Generate a Traceability Matrix” on page 3-26

“Add Comments to a Traceability Matrix” on page 3-26

“Retain Comments When Regenerating a Traceability Matrix” on page 3-27

“Traceability Matrix Limitations” on page 3-27

Traceability Matrices Basics
When you use Model-Based Design and production code generation to develop
application software components, you can generate a traceability matrix. The
traceability matrix provides traceability among model objects, generated code,
and model requirements. You can add comments to the generated traceability
matrix. If you change the model and regenerate the traceability matrix, the
software retains your comments.

For a given model, the generated traceability matrix can provide information
about:

• Model objects that are traceable between the model and generated code,
such as Simulink blocks, Stateflow® objects, and MATLAB functions.

• Model objects that are untraceable between the model and generated code,
such as eliminated and virtual blocks.

• Requirements documents that you link to model objects using the Simulink
Verification and Validation™ Requirements Management Interface (RMI).

Generate the traceability matrix using the slci.ExportTraceReport function
from the MATLAB Command Window. The function creates an XLS file that
contains the following worksheets:

• Model Information — Summary of the model configuration and
checksum. The summary includes the model name, version, author,

3-24

Traceability Matrices

creation date, last saved by, last updated date, checksum, and the selection
of Traceability Report Contents parameters.

• Code Interface — Information about the generated code interface, such
as function prototype and timing information for the model initialize and
step functions.

• Code Files— File folders and names of the generated code files.

• Report— Traceability information for each model object, including model,
generated code, and requirements. Each row in the worksheet pertains to a
single occurrence of a model object. The information for a model object is
in more than one row if the object:

- Appears more than once in the generated code.

- Links to more than one requirement.

Prerequisites for Generating a Traceability Matrix
Before generating a traceability matrix for model objects, generated code, and
model requirements, perform the following steps:

1 Optionally, attach requirements documents. For more information, see
“Workflows for Creating Links Using Selection-Based Linking” in the
Simulink Verification and Validation documentation.

2 In the Configuration Parameters dialog box, on the Code
Generation > Report pane, select:

a “Create code generation report”

b At least one of the following Traceability Report Contents
parameters:

• “Eliminated / virtual blocks”

• “Traceable Simulink blocks”

• “Traceable Stateflow objects”

• “Traceable MATLAB functions”

3 Generate and inspect code for the model.

3-25

3 Code Inspection

Generate a Traceability Matrix
To generate a traceability matrix:

1 Open the model if it is not already open.

2 Verify that you have completed the “Prerequisites for Generating a
Traceability Matrix” on page 3-25. This includes selecting report options
and generating and inspecting model code.

3 In the MATLAB Command Window, enter the following command, where
model_name is the name of the model and file_name is the name of the
XLS file to be created:

slci.ExportTraceReport('model_name','file_name')

For example:

slci.ExportTraceReport('slcidemo_roll','slcidemo_roll_tracereport')

The software generates the traceability matrix.

4 Open the traceability matrix file, review the traceability matrix, and add
comments in new columns. For more information, see “Add Comments to a
Traceability Matrix” on page 3-26.

Add Comments to a Traceability Matrix
You can add comments to the traceability matrix that you generated using
the slci.ExportTraceReport function.

To add comments to the traceability matrix, you must:

• Create new columns for your comments.

• Use unique column headings. Columns that you add must have headings.

• Add at least one entry to the column, other than the column heading.

• Retain the following columns:

- Model Object Name

- Model Object Path

3-26

Traceability Matrices

- Model Object Subsystem

- Code File Location

- Code File Name

- Code Function

- Code Line Number

- Model Object Unique ID

- Model Object Optimized

- Code Comment Checksum

Note Comments must resolve to a text string. For example, a link to an
image resolves to a text string, but a copy of the image does not.

Retain Comments When Regenerating a Traceability
Matrix
To regenerate a traceability matrix and retain your comments:

1 Navigate to the working folder of the model.

2 Optionally, regenerate and reinspect code for your model. Regenerating
and reinspecting code before generating the traceability matrix ensures
that you have the latest model-to-code traceability information.

3 In the MATLAB Command Window, enter the following command.
file_name is the name of the existing traceability matrix that you are
regenerating. If the existing traceability matrix is in a different folder,
include the full path to that folder in path.

slci.ExportTraceReport('model_name', 'file_name', 'path')

The traceability matrix regenerates.

Traceability Matrix Limitations
The traceability matrix generation capability has the following limitations:

3-27

3 Code Inspection

• Does not support generating a traceability matrix for referenced models.
When you generate a traceability matrix for a model that contains
referenced models, the traceability matrix contains information about the
Model block only. The traceability matrix does not contain information
about the contents of the referenced model. If your model contains
referenced models, generate a traceability matrix for the top-level model
and each referenced model separately.

• Works with the Microsoft® Windows® platform only.

• In most cases, identifies comments that you add to the traceability matrix,
but when comments cannot be identified, the traceability matrix includes
the text:

Row is not unique: comment

• Does not support information stored in external .req files. For example,
when you generate a traceability matrix for a model with externally stored
requirements information, the traceability matrix does not include the
requirements information.

3-28

4

DO-178C Objectives
Compliance

• “Model-Based Design Workflow in DO-178C” on page 4-2

• “Applicable DO-178C Objectives” on page 4-5

4 DO-178C Objectives Compliance

Model-Based Design Workflow in DO-178C
Applying Model-Based Design to a safety-critical system requires extra
consideration and rigor so that the system adheres to defined safety
standards. DO-178C, Software Considerations in Airborne Systems and
Equipment Certification, is such a standard.

MathWorks provides a DO Qualification Kit product that supports you
in qualifying MathWorks verification tools for projects based on the
DO-178C standard. The kit also provides detailed information on how
to apply Model-Based Design to DO-178C. For more information, see
http://www.mathworks.com/products/do-178/.

The DO-178C software life cycle consists of objectives that must be met for
each of the life cycle stages. In Annex A of the DO-178C standard, these
objectives are summarized in tables. The DO Qualification Kit document
Model-Based Design Workflow for DO-178C summarizes those tables and
provides recommendations on meeting the objectives using a Model-Based
Design process.

The following diagram shows a Model-Based Design workflow that addresses
the development and verification activities in a software life cycle, as
described by the DO-178C standard.

4-2

http://www.mathworks.com/products/do-178/

Model-Based Design Workflow in DO-178C

Requirements Model Source code Object code

CompilationCode
Generation

Modeling

Development artifact

Software development activity

Verification, validation, or tracing activity

Requirements
validation

Model
conformance

Code
conformance

Model traceability Source code traceability

Code
verification

High-level
verification

Low-level
verification

Model
verification

Object code traceability

The following table summarizes how Simulink Code Inspector and other
MathWorks products and capabilities can be used in each step of the workflow.

Workflow Activity Available Products and Capabilities for Model-Based Design

Requirements
validation

Manual review

Modeling Simulink, Stateflow

Model traceability Simulink Verification and Validation — Requirements Management
Interface (RMI), Simulink Report Generator™ — System Design
Description report*

Model conformance Simulink Verification and Validation — DO-178C/DO-331 checks*

4-3

4 DO-178C Objectives Compliance

Workflow Activity Available Products and Capabilities for Model-Based Design

Model verification SystemTest™ — Limit Check element*, Simulink Design Verifier™ —
Property Proving (optional), Simulink Design Verifier — Design Error
Detection (optional), Simulink Verification and Validation — Model
Coverage*, Simulink Report Generator — System Design Description
report*

Code generation Embedded Coder

Source code
traceability

Simulink Code Inspector — Traceability Report*

Code conformance Polyspace® Products for C/C++ — MISRA AC AGC checks*

Code verification Simulink Code Inspector — Code Verification Report*

Compilation Third-party IDE or compiler

Low-level verification SystemTest — Limit Check element*, Simulink Design Verifier — Test
Generation, Embedded Coder — PIL test, Embedded Coder — Code
coverage tool link (requires third-party code coverage tool), Polyspace
Products for C/C++*

High-level verification SystemTest — Limit Check element*, Embedded Coder — PIL test,
Embedded Coder — Code coverage tool link (requires third-party code
coverage tool), Polyspace Products for C/C++*

Object code
traceability (Level
A only)

Embedded Coder — Code generation report, Third-party IDE or
compiler — Object code listing

*The DO Qualification Kit product may be used to support DO-178C tool qualification.

4-4

Applicable DO-178C Objectives

Applicable DO-178C Objectives
The following table summarizes anticipated certification credits for Simulink
Code Inspector, when used with other code verification products.

Annex
A
Table

Objectives DO-178C
Reference

Software
Levels

Anticipated Certification Credit

A-5 (1) Source code
complies with low-level
requirements

Section
6.3.4.a

A, B, C Full — Simulink Code Inspector

A-5 (2) Source code complies
with software architecture

Section
6.3.4.b

A, B, C Full — Simulink Code Inspector

A-5 (3) Source code is verifiable Section
6.3.4.c

A, B Full — Simulink Code Inspector

A-5 (4) Source code conforms to
standards

Section
6.3.4.d

A, B, C Full — Polyspace MISRA-AC
ACG rules checker

A-5 (5) Source code is traceable
to low-level requirements

Section
6.3.4.e

A, B, C Full — Simulink Code Inspector

A-5 (6) Source code is accurate
and consistent

Section
6.3.4.f

A, B, C Partial — Simulink Code
Inspector can detect uninitialized
or unused variables or constants
in the generated C code. Polyspace
can detect overflows and data
corruption in the source code.
Other issues, such as stack usage,
resource contention, worst case
execution time, and exception
handling must be assessed by
other means.

4-5

	toc
	Getting Started
	Product Description
	Key Features

	Why Use This Product?
	Code Inspector Capabilities
	About Code Inspector Capabilities
	Model Interface
	Block Behavior
	Block Connectivity and Execution Order
	Data and File Packaging
	Local Variables
	Limitations

	General Approach to Code Inspection
	Simulink Code Inspector and DO-178 Workflows
	End-to-End General Workflow

	Inspect Generated Code for a Sample Model

	Model Compatibility Checking
	Model Compatibility Checking Basics
	Check Model Compatibility Using the Graphical User Interface
	Check Model Compatibility Using the Command-Line Interface
	Fix or Work Around Incompatibilities
	Fix or Work Around Unsupported Blocks
	Fix or Work Around Global Data Store Usage

	Code Inspection
	Code Inspection Basics
	Inspect Code Using the Graphical User Interface
	Inspect Code Using the Command-Line Interface
	Code Inspection Reports
	Code Inspection Report Basics
	Interpret the Overall Inspection Result
	Analyze Code Verification Results
	Model Patterns That Might Result in Code Verification Failures
	Redundant Modeling Patterns
	Blocks with Constant Non-Finite Outputs
	Action Subsystems with Output Not Connected to Merge Blocks
	Multiport Switch Blocks with Input From Same Local Signal

	Analyze Traceability Results

	Traceability Matrices
	Traceability Matrices Basics
	Prerequisites for Generating a Traceability Matrix
	Generate a Traceability Matrix
	Add Comments to a Traceability Matrix
	Retain Comments When Regenerating a Traceability Matrix
	Traceability Matrix Limitations

	DO-178C Objectives Compliance
	Model-Based Design Workflow in DO-178C
	Applicable DO-178C Objectives

